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Deinterleaving of Discrete Renewal Process
Mixtures with Application to Electronic Support

Measures
Jean Pinsolle, Olivier Goudet, Cyrille Enderli, Sylvain Lamprier, Jin-Kao Hao

Abstract—In this paper, we propose a new deinterleaving
method for mixtures of discrete renewal Markov chains. This
method relies on the maximization of a penalized likelihood score.
It exploits all available information about both the sequence of the
different symbols and their arrival times. A theoretical analysis is
carried out to prove that minimizing this score allows to recover
the true partition of symbols in the large sample limit, under
mild conditions on the component processes. This theoretical
analysis is then validated by experiments on synthetic data.
Finally, the method is applied to deinterleave pulse trains received
from different emitters in a RESM (Radar Electronic Support
Measurements) context and we show that the proposed method
competes favorably with state-of-the-art methods on simulated
warfare datasets.

Index Terms—Deinterleaving; Renewal process; Maximum
likelihood estimation; Electronic support measure; Radar.

I. INTRODUCTION

WE consider the following problem. A sequence z =
(zi)i∈Z of symbols has been observed during a time

window J0, T K, with T ∈ N∗. The symbols zi of the sequence
arrive at successive integer time steps ti ∈ Z, with the
first symbol of the observation window being indexed as z0:
0 ≤ t0 < t2 < · · · ≤ T . t is the sequence of arrival times
observed until time T . Each symbol of z is drawn from a
finite set A (alphabet). The underlying generative model P
of this sequence is assumed to be a set of m > 0 Markov
processes GΠ({P e}e∈E(Π)), where E(Π) is a set of emitters
and m = |E(Π)| is the number of different emitters in this set.
Each P e, with e ∈ E(Π), is an independent random process
for emitter e, generating symbols in the sub-alphabet Ae ⊂ A
with their corresponding arrival times. Π = {Ae}e∈E(Π) is the
partition of A into the sub-alphabets Ae, which are assumed
to be non-empty and disjoint. Given a sample (z, t) from P ,
observed until time T , and without prior knowledge about
the number of sub-alphabets Ae (number of emitters), the
deinterleaving problem of interest is to reconstruct the original
partition Π = {Ae}e∈E(Π) of the alphabet.
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This problem is motivated by an application in the context
of electronic warfare, where an airborne ESM (Electronic Sup-
port Measure) receiver is located in an environment composed
of many radars. This receiver intercepts pulse trains from
multiple transmitters over a common channel. Each pulse is
characterized by a frequency, which can be associated with
a symbol zi in alphabet A (using a clustering method in
frequency space), and a time of arrival (TOA), which can be
discretized and assigned an integer value ti. Other parameters
such as pulse duration, power, or angle of arrival, may also be
available, but in this work we restrict attention to the time and
frequency information. In this context, the sub-alphabets Ae

correspond to the frequency channels used by the transmitters.
They realize a partition of the total processed frequency band,
which corresponds to the case where transmitters avoid mutual
interference by controlling their access to the radio spectrum.
The cases where different transmitters share common fre-
quency channels is not addressed here. It corresponds to the
case of non disjoint sub-alphabets which is out of the scope
of this work. From the recorded pulse train, the aim of our
problem is to determine how many radars are present in the
environment and what signals are emitted by each radar.

The literature on deinterleaving RADAR signals is abun-
dant. It was first performed in the literature by calculating
histograms of received time differences [1], [2] or by estimat-
ing the phases of the interleaved pulse trains [3]. This type of
method has recently been revisited in [4], who proposed an
agglomerative hierarchical clustering method combined with
optimal transport distances. Such clustering methods deliver
fast outcomes, but might fail in environments with complex
radar patterns, potentially causing a performance degradation.

To overcome these limitations, another stream of work is
based on inferring mixtures of Markov chains [5]. In these
methods, a clustering algorithm is first applied to group
the different pulses into different clusters, or letters, which
correspond to the alphabet A. Then, in a second step, these
letters are partitioned into different sub-alphabets to identify
the different emitters that could have generated the observed
sequence of letters.

These methods are mainly based on two types of pulse train
modeling in the literature: Interleaved Markov Process (IMP)
and Mixture of Renewal Processes (MRP).

Modeling with IMP was introduced for the first time in
[5]. This model does not directly take into account the arrival
times of pulses, but rather considers their order of arrival.
The overall interlaced sequence produced by the different
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transmitters and received in a single channel is modeled using
a switching mechanism, whose role is to alternate the sequence
of transmissions by the different emitters within the observed
sequence. The inference of an IMP is generally carried out
using non-parametric methods, by maximizing a global pe-
nalized likelihood score. When sub-alphabets are disjoint, i.e.,
each symbol can only be transmitted by a single transmitter, a
deinterleaving scheme has been proposed in [6]. The authors
proved the convergence of this method under mild conditions
on switching and component processes, and provided that all
possible partitions of letters can be evaluated. However, as
the exploration of all possible partitions grows exponentially
with the number of different symbols, the evaluation of all
candidate partitions may be unfeasible in practice. Therefore,
different search heuristics have recently been proposed to
explore the partition space: an iterated local search in [6],
[7], and a memetic algorithm in [8]. Meanwhile, [9] has
proposed a variant of the IMP model introduced in [6] for the
case of non-disjoint sub-alphabets inferred with an expectation
maximization (EM) algorithm. The asymptotic consistency of
this deinterleaving scheme is not proven.

These IMP models do not explicitly take into account
the delay between the different signals in the deinterleaving
scheme, but only their order of arrival. This feature makes
them robust to disturbances that may occur during arrival time
measurements, but does not take advantage of all available
information. However, this information can be critical to the
deinterleaving process because the times between different
pulses generally follow regular, identifiable distributions.

Therefore, another category of methods has emerged in the
literature based on inference of mixtures of Markov renewal
processes. In these models, there is no switching mechanism,
and the global generation model consists of a set of inde-
pendent Markov renewal chains, or semi-Markov processes,
which have been studied in detail in the discrete case, notably
in [10]. Estimation of mixtures of semi-Markov chains has
been carried out in [11] for continuous data or discrete data
generated by a negative binomial distribution. The authors
used an expectation maximization (EM) algorithm. Another
method for deinterleaving a mixture of renewal processes has
recently been proposed in [12]. This model is designed for
continuous data and relies solely on temporal information. The
proposed model assumes that the number of emitters is known
in advance and that there are no labels on individual pulses.

In this paper, we aim to achieve the best of both worlds,
namely to take into account all available information, such as
pulse characteristics and arrival times, by modeling a mixture
of renewal processes as in [11]. We also aim to propose
a consistent deinterleaving scheme, as it has been done for
IMP models [6], enabling the true partition to be recovered
with probability tending towards one when sufficient data is
provided. We would also like to take advantage of recent
advances to explore the symbol partition space proposed by
[8] and applied to the deinterlacing of RADAR pulse trains.

This paper is organized as follows. Section II presents the
renewal processes mixture model. Section III describes the
estimation of the parameters and the deinterleaving method
to retrieve the partition of the symbols. Section IV presents

the experimental setting and a first experimental analysis of
the consistency of the score. Section V reports on empirical
results of the proposed method compared to the state of the
art. Section VI discusses the contribution and presents some
perspectives for future work.

II. MIXTURE OF RENEWAL PROCESSES

The underlying generative model P of a sequence (z, t) is
assumed to be a set GΠ({P e}e∈E(Π)) of m > 0 independent
Markov processes.

A. Markov renewal chains

Given a sequence z of symbols in the alphabet A, for each
process P e associated to the sub-alphabet Ae, we use z[Ae] ,
or just ze, to present the sub-string of the sequence z obtained
by deleting all symbols not in Ae and t[Ae] (or just te) the
corresponding sequence of arrival times.

Each process P e, with e ∈ E(Π), is modeled as a Markov
renewal chain (Ze, T e) with:

• the chain Ze with state space Ae, generating a sequence
of symbols (zel )l∈Z.

• the chain T e generating the strictly increasing arrival
times tel of all zel .

For each process P e, we introduce also the chain Xe =
(xe

l )l∈Z, corresponding to the sojourn time in each state of
the chain Ze. For all l ∈ Z, xe

l = tel − tel−1 > 0.
In the context of Radar Electronic Support Measurement

(RESM), the arrival times of the individual pulses, and conse-
quently the interval between them, are multiples of integers.
The arrival times are quantified by the digital receiver, with
a time resolution corresponding to the Least Significant Bit
(LSB). Thus every time measurement is multiple of this
LSB. Therefore, for each letter a in a sub-alphabet Ae, we
assume that each sojourn time is drawn in a finite set Ka of
strictly positive integers. In the following, for a given emitter
e ∈ E(Π), we also note Ke =

⋃
a∈Ae

Ka as the union of
sojourn time sets of all symbols from Ae.

Each chain (Ze, T e) satisfies for all l ∈ Z the following
markov assumption:

P e((zel , t
e
l )|(ze<l, t

e
<l)) =

= P e(zel |zel−1)× P e(tel − tel−1|zel−1). (1)

where (ze<l, t
e
<l) is the history of emission of transmitter e

before event l.
Thus, after a given event at tel , the next symbol zel+1 is

independent from the chosen delay xe
l+1. Also the delay xe

l+1

only depends on the previously emitted symbol zel .
We make these assumptions in order to reduce the number

of parameters to be estimated and therefore speed up the
likelihood calculations, although in practice this is not always
true, since some agile radar waveforms may consist of a
periodically repeated synchronized time-frequency pattern. In
some other cases, (1) may hold at least approximately. We
assume (and empirically confirm in our context) that the
likelihood expression derived from (1) is robust enough to
produce good deinterleaving performance in practice.
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Moreover, we assume that each process P e is time ho-
mogeneous. Therefore P e(zel+1|zel ) and P e(tel+1 − tel |zel ) are
independent from l.

We denote by Pe = (pei,j) the transition matrix of Ze,
with for i, j ∈ Ae pei,j = P e(zel+1 = j|zel = i), l ∈ N,
and for l ∈ N, i ∈ Ae, k ∈ Ki, we introduce the quantity
qei (k) = P e(xe

l+1 = k|zel = i).

Assumption (P). We assume that pei,j > 0 for i, j ∈ Ae.

Assumption (Q). For each i ∈ Ae, k ∈ Ki, we assume that
qei (k) > 0.

Assumptions (P) and (Q) allow us to establish the unique-
ness of generative model representations. The proof of Theo-
rem 1 is given in the appendix of the online supplement.

Theorem 1. Given a generative model P =
GΠ({P e}e∈E(Π)), corresponding to a partition Π of
the alphabet A, under assumptions (P) and (Q), if
P = GΠ′({P e}e∈E(Π′)) for some partition Π′, then Π = Π′

must hold.

III. DEINTERLEAVING SCHEME

In this section, the estimation of the different components
of the proposed discrete renewal process mixture is described
and a consistent negative log-likelihood score is derived.

A. Semi-Markov Chain Estimation

For each transmitter e with sub-alphabet Ae, and given a
sequence (z, t) observed during a time window J0, T K, we
define the following quantities:

• Ne
i (T ), the number of symbols i in the observed se-

quence ze = z[Ae] until time T .
• Ne

i,j(T ), the number of transitions from i to j, observed
in the sequence ze until time T .

• Ne
i (k, T ), the number of transitions observed from i to

any other letter in ze until time T , with sojourn time
equal to k.

• Ne(T ), the total number of symbols in ze .

For a transmitter e, let (ze, te) = (zei , t
e
i )

Ne(T )−1
i=0 the or-

dered sequence of events generated by e during the observation
window according to (1). Let also (ze−1, t

e
−1), with te−1 < 0, be

the last event generated by e directly preceding the observation
window. The conditional likelihood of the observed sequence
(ze, te) during J0, T K given (ze−1, t

e
−1) is defined as:

LT
−(z

e, te) = P e(ze0|ze−1)
P e(te0 − te−1|ze−1)

Re
−1(|te−1| − 1)

Ne(T )−1∏
l=1

P e(zel |zel−1)P
e(tel − tel−1|zel−1)R

e
Ne(T )−1(u

e
T ), (2)

where Ri(.), the survival function of sojourn time in state
i, is defined for k ∈ N by Ri(k) = P (xe

i+1 > k|zei ), and
ue
T = T − teNe(T )−1.

However, (ze−1, t
e
−1) is unknown, and its bayesian estima-

tion would imply a complex marginalization, intractable in
our deinterleaving setting. Rather, we rely on the following
approximation, which ignores start and end of the observation
window without biasing the process (see proposition 6 in the
appendix of the online supplement):

LT
∼(z

e, te) =

Ne(T )−1∏
l=1

P e(zel |zel−1)P
e(tel − tel−1|zel−1) (3)

For each transmitter e, we define the empirical estimators
of the coefficients pei,j of the transition matrix Pe and the em-
pirical estimators of the coefficients qei (k) of the distributions
of the sojourn times, respectively by p̂e,∼i,j (T ) :=

Ne
i,j(T )

Ne
i (T ) and

q̂e,∼i (k, T ) :=
Ne

i (k,T )
Ne

i (T ) , if Ne
i (T ) ̸= 0. If Ne

i (T ) = 0, we set
p̂e,∼i,j (T ) := 0 and q̂e,∼i (T, k) := 0.

Proposition 1. The estimators p̂e,∼i,j (T ) and q̂e,∼i (k, T ) maxi-
mize the approached log-likelihood function log(LT

∼(z
e, te)).

When using the estimators p̂e,∼i,j (T ) and q̂e,∼i (k, T ), the
maximum of the approached conditional likelihood of the
sequence (ze, te) is denoted L̂T

∼(z
e, te).

Given an observed sequence (ze, te), generated by transmit-
ter e and observed until time T , we denote by HT (ze, te) =
−log(L̂T

∼(z
e, te)), the approached maximum negative log-

likelihood for transmitter e.
We have

HT (ze, te) = HT
Z (z

e, te) +HT
X(ze, te), (4)

with HT
Z (z

e, te) the term due to the state transitions for
transmitter e,

HT
Z (z

e, te) = −
∑

i,j∈Ae

Ne
i,j(T )log

Ne
i,j(T )

Ne
i (T )

, (5)

and HT
X(ze, te) the term due to the distribution of sojourn time

for transmitter e:

HT
X(ze, te) = −

∑
i∈Ae

∑
k∈Ki

Ne
i (k, T ) log

Ne
i (k, T )

Ne
i (T )

. (6)

By convention in (5), given T > 0, if for some i and j,
we have Ne

i,j(T ) = 0, i.e. there is no transition from i to
j in the observed sub-sequence ze until time T , then we set
Ne

i,j(T )log
Ne

i,j(T )

Ne
i (T ) := 0. In the same way, in (6), if for i ∈ Ae,

and k ∈ Ki, Ne
i (k, T ) = 0, we set Ne

i (k, T ) log Ne
i (k,T )
Ne

i (T ) :=
0.

B. Global model estimation and deinterleaving scheme

As all transmitters are independent, the global approached
likelihood of the sequence (z, t) observed until time T , and
related to a partition of symbols Π = ∪e∈E(Π)Ae, is given by

LT
∼,Π(z, t) =

∏
e∈E(Π)

LT
∼(z

e, te). (7)

We use HT
Π (z, t) = −log L̂T

∼,Π(z, t) to denote the corre-
sponding empirical entropy. Thus, we have,



4

HT
Π (z, t) =

∑
e∈E(Π)

HT (ze, te), (8)

with HT (ze, te) given by Equation (4).
Given a sequence (z, t) observed during the time window

J0, T K, the proposed deinterleaving scheme corresponds to
finding the partition minimizing a penalized entropy score
function of the form:

CT
Π(z, t) = HT

Π (z, t) + γmlog(n), (9)

with γ a non-negative (penalization) constant, m the number of
transmitters and n the size of the observed sequence z until
time T . Such penalization in log(n) [13] aims to take into
account the fact that the number of parameters, related to the
number of transmitters, varies with the considered partition.
Given a candidate partition Π, if simultaneous emission of
different symbols from the same alphabet Ae occurs in the
observed sequence, the partition Π is considered incompatible
with the process that generated the sequence (the same process
cannot emits several symbols at the same time). In that case,
we arbitrarily set CT

Π(z, t) := +∞ to discard that wrong
candidate partition.
Assumption (K). Let Ke =

⋃
z∈Ae

Kz be the set of
all sojourn times for transmitter e. For all transmitter
e ∈ E(Π), associated to the underlying generative process
GΠ({P e}e∈E(Π)), the greatest common divisor (gcd) of the
set Ke is equal to 1.

Under this additional assumption, we show with the follow-
ing theorem that the deinterleaving scheme allows to retrieve
the true partition when T goes toward infinity, with an exhaus-
tive search in the space of all possible partitions of the alphabet
A. This proof is given in the appendix (online supplement).
Hypothesis (K) is quite relevant for radar emitters: to resolve
ambiguities on pulse repetition interval range measurement,
pulse repetition intervals are often taken purposely coprime
which in turn translates into coprimed sojourn time.

Theorem 2. Let PΠ = GΠ({P e}e∈E(Π)) and let Π
′

be
a partition of A such that Π

′ ̸= Π. Then, if PΠ verifies
assumptions (Q), (K) and (P), we have

lim
T→∞

P(z,t)∼PΠ

(
1

T
(CT

Π′(z, t)− CT
Π(z, t)) > 0

)
= 1. (10)

This is also true for sequences (z, t) sampled from PΠ|Π′ ,
with PΠ|Π′ a process restricting sequences from PΠ to the
subset of possible sequences for PΠ′ .

The second part of the theorem shows that the result not
only holds due to the incompatibility of partitions. Even if,
for instance, no simultaneous emission of different symbols
occurs in the observed sequence (which can be rather unlikely
for some scattered sets of emission delays), our deinterleaving
process is able to identify the true partition if the observed
sequence is sufficiently long.

This result is valid for all non-negative values of the
penalization constant γ in (9), and in particular when γ = 0, as
it is experimentally confirmed in Section IV using synthetic
data generated according to the model described in Section

II. However, we experimentally observe in practice, as shown
in Section V, that using γ > 0 can improve the results when
applying the deinterleaving scheme in the ESM domain, whose
incoming data does not exactly match the proposed model.

C. Solving the Combinatorial Problem in the Space of Parti-
tions

Given an alphabet A and a sample (z, t) observed until time
T , finding the partition Π minimizing the score CT

Π given by
(9) requires to solve a combinatorial problem in the search
space of the alphabet partitions given by

ΩA = {Π|A =
⋃

e∈E(Π)

Ae

∧ ∀(e, e′) ∈ E(Π)2, e ̸= e′ =⇒ Ae ∩Ae′ = ∅}.
The size of this search space can be calculated exactly with

the Bell number:

B|A| =

|A|∑
k=0

1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)|A|. (11)

For a small number of letters (less than 10), as the size of
ΩA remains reasonable (less than B10 = 115975), we can use
an exhaustive search in the space of all partitions. This can be
done efficiently using the algorithm proposed in [14].

However, since this space search grows exponentially with
the number of letters, an exhaustive search is in general not
feasible in a reasonable amount of time.

Therefore, when the number of letters is greater than 10,
we propose to use an heuristic to find the best partition
Π in the huge search space ΩA. We adapted the recent
memetic algorithm MAAP, which was previously used for a
deinterleaving problem in [8], seen as a particular grouping
problem. Like MAAP, our proposed algorithm, called TEDS
for Temporal Estimation Deinterleaving Scheme, uses a pop-
ulation of two different candidate solutions (partitions). As
described in Algorithm 1, it alternates between two phases
during the search. In the first phase, a local search procedure
(called TabuAP) is performed to improve the partitions in
the population. In the second phase, crossovers (GLPX) are
performed between partitions to generate new candidate parti-
tions, which are further improved by the TabuAP procedure in
the next generation. The algorithm is efficiently implemented
with incremental evaluation techniques, taking advantage of
the fact that the likelihood score of each sub-alphabet Ai

can be calculated independently. The appendix of the online
supplement gives more details on the implementation of the
TabuAP and GLPX procedures.

IV. FIRST EXPERIMENTAL ANALYSIS

The first experiment studies the ability of the deinterleving
scheme to retrieve the true partition, when the data are gener-
ated according to the ideal framework described in Section II,
with a collection of independent renewal processes, and when
it is possible to perform an exhaustive search in the space ΩA
of the partitions. We first describe the data generating process
used for these experiments. Then we present an experimental
analysis of the consistency of the score.
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Algorithm 1 TEDS -Temporal Estimation Deinterleaving
Scheme (inspired by MAAP)

1: Input: sequence (z, t) observed until time T , with z drawn
from alphabet A.

2: Output: Best partition Πbest of A found so far.
3: Π1,Π2,Πbest ← random draws in partition space ΩA
4: while stop condition is not met do
5: Π′

1 ← TabuAP(Π1, (z, t))
6: Π′

2 ← TabuAP(Π2, (z, t))
7: if CT

Π′
1
(z, t) < CT

Πbest
(z, t) then

8: Πbest ← Π′
1

9: end if
10: if CT

Π′
2
(z, t) < CT

Πbest
(z, t) then

11: Πbest ← Π′
2

12: end if
13: Π1 ← GLPX(Π′

1,Π
′
2, (z, t))

14: Π2 ← GLPX(Π′
2,Π

′
1, (z, t))

15: end while
16: return Πbest

A. Synthetic dataset generation

The datasets are based on synthetic sequences (z, t)
of size n generated by a set of m renewal processes
GΠ({P e}e∈E(Π)). Given a length n and an alphabet A, a
scenario, i.e a sequence (z, t), is generated as described below.
Each parameter is randomly drawn from uniform distributions
on the specified interval or space.

• From an alphabet A, a ground truth partition Πtruth =
{Ae}e∈E(Πtruth) of the alphabet A is drawn in the search
space ΩA. m = |E(Πtruth)| is the number of transmitters
associated with this partition.

• For each transmitter e ∈ E(Πtruth), with correspond-
ing sub-alphabet Ae, a probabilistic transition matrix
Pe = (pei,j) of size |Ae| × |Ae| is drawn with non-zero
coefficients in order to satisfy assumption (P).

• For each symbol a in A, a number of sojourn time
states is drawn in J1,KK, then different sojourn times
ka are drawn in the interval J1, LK, such that assumption
(K) is verified. K and L are two hyper-parameters of
the generator, set up to the values m + 1 and |A| + 1
respectively (arbitrary choice). Then, for each symbol a in
A, a probability qa(ka) of each sojourn time ka, is drawn
such as

∑
ka∈Ka qa(ka) = 1, and ∀ka ∈ Ka, qa(ka) > 0,

in order to meet assumption (Q).
• An initial state symbol ze0 of each process P e is drawn

in Ae.
• For each transmitter P e a sequence (zel , t

e
l )l∈N is gener-

ated using the initial state ze0, the transition matrix Pe and
the distribution of sojourn times for each symbol a ∈ Ae.

• The m sequences (zel , t
e
l ) are merged to build a sequence

(z, t) of size n, with increasing times of arrival 0 ≤ t0 ≤
t1 ≤ · · · ≤ tn−1 ≤ T .

Note that the number of transmitters is drawn between 1
and the number of symbols |A| (see first point), but it is
not equivalent to a uniform random draw in J1, |A|K since it
depends on the topology of the partition space. Still, the prob-

Fig. 1. Display of data generated for a scenario of size 200, with 5 different
symbols coming from 3 different emitters. The y-axis represents the symbols,
the x-axis their arrival times. The ground truth is Πtruth = {a, e}∪{b, d}∪
{c}: emitter 0 in blue emits symbols a and e, emitter 1 in red emits symbols
b and d, emitter 2 in green emits symbol c.

ability to draw a partition with a high number of transmitters
m increases as the number of symbols |A| increases.

Using this synthetic dataset generator, denoted as G(A, n),1
we first study different scenarios with different sizes n and
a low number of symbols. This allows us to experimentally
verify that the ground truth partition Πtruth can be retrieved
with probability one, when n goes toward infinity and when
an exhaustive search in the space of all partitions is performed.

Figure 1 illustrates an example of generated scenario with
|A| = 5 and n = 200. Here the ground truth is Πtruth =
{a, e} ∪ {b, d} ∪ {c}, there are 3 different transmitters, each
distinguished by its color.

B. Empirical verification of the consistency of the score

In order to analyse the robustness of our deinterleaving
scheme, we study different configurations with a number of
symbols |A| ∈ {3, 5, 7, 9} and a length n ranging in the inter-
val J0, 5000K. For each configuration (|A|, n), 1000 different
datasets (A,Πtruth, z, t) are independently generated.

For each of these datasets, an exhaustive search of the
partition Π̂ minimizing the score CT

Π̂
(z, t), given by Equation

(9) and computed with γ = 0, is performed.2 At the end of this
process, if Π̂ is equal to Πtruth (up to a permutation of the
different sub-alphabets), we consider it a success, otherwise
we consider it a failure.

Figure 2 shows the average success rate of this procedure
computed for 1000 independent scenarios for each configura-
tion (|A|, n).

These results confirm the convergence of the model even
without penalization on the score (when γ = 0), as stated
by Theorem 2. Indeed, we observe on this figure that for all
scenarios with different numbers of symbols, that the success

1The generated datasets are available at https://github.com/JeanPinsolle/
renewal processes.

2The number of candidate partitions are respectively 5, 52, 877, 21147
when the numbers of letters are respectively |A| = 3, 5, 7, 9 (cf. Equation
(11)). It is therefore possible to enumerate all the partitions in a reasonable
amount of time in this case.
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rate converges toward 100% when the sequence length n of
the observed data (z, t) increases.

We also observe a decrease in convergence speed as
alphabet size increases. For alphabet sizes of 3, 5, 7, 9,
the success rate reaches 99% for sequence lengths n of
460, 875, 1920, 2395, respectively. This can be explained by
the greater number of parameters to be estimated as the
alphabet size increases.

Fig. 2. Average success rate of the proposed deinterleaving scheme when
an exhaustive search in the partition space is performed and displayed for
different numbers of symbols and different sequence sizes n. The horizontal
line represents the 99% threshold of correctly deinterlaced sequences.

V. EXPERIMENTAL VALIDATION

The goal of this section is to evaluate the performance of the
proposed algorithm TEDS in comparison with state-of-the-art
algorithms of the literature. The TEDS algorithm corresponds
to the evaluation of the score presented in Section III-B
coupled with the memetic algorithm mentioned in Section
III-C for the exploration of the partition space. We first
describe the baseline algorithms, followed by their hyper-
parameter settings used in the experiments. We then report
the experimental results obtained on the synthetic datasets
with 5, 10, 20 and 50 symbols coming from the generator
presented in the last section, followed by the results on datasets
coming from an ESM data generator, which simulates realistic
situations with mobile radar warning receivers.

A. State-of-the-art algorithms

For comparison with the state of the art, the following
algorithms have been re-implemented in Python 3 from the
authors’ original papers:

• The improved SDIF algorithm from [15]. SDIF is an
algorithm first proposed in [2], which is a well-known
reference in the RADAR community. It aims to identify
different letter sub-sequences based on the calculation of
histograms of observed sojourn times.

• OT: the deinterlacing algorithm proposed in [4]. In this
algorithm, a matrix of optimal transport distance is first
computed between all sub-sequences of symbols.3 Then,
according to this distance matrix, a hierarchical clustering
method is applied to group the different sequences.

3We used the POT Python library for this implementation https://pythonot.
github.io/.

• IMP: the deinterleaving scheme proposed in [6] with
the exploration of the partition space developed by [7].
In this approach, the underlying generative model of
the sequence is assumed to be an interleaved Markov
process P = IΠ(P1, . . . , Pm;Pw), where m > 0 is
the unknown number of different transmitters, Pi is an
independent component random process for transmitter
i, generating symbols in the sub-alphabet Ai ⊂ A,
Pw is a random switch process over transmitters. The
vector k = (k1, . . . , km; kw) corresponds to the different
orders of the components and switch Markov processes.
The authors proposed a deinterleaving scheme, given by
minimizing a global cost function:

(Π̂, k̂) = argmin
(Π,k)

CI
(Π,k)(z), (12)

with CI
(Π,k)(z) a global penalized maximum likelihood

(ML) entropy score of the sequence z of size n (sorted
by increasing times of arrival t) under the IMP model
defined as

CI
(Π,k)(z) =

m∑
i=1

Ĥki
(z[Ai]) + Ĥkw

(σΠ(z)) + βκ log n,

(13)
with Ĥki

(z[Ai]) the ML entropy of each process Pi,
Ĥkw

(σΠ(z)) the ML entropy of the switch process, β
a constant and κ the number of free parameters in the
model.

B. Parameter settings

In TEDS, the penalization parameter γ in Equation (9) is set
to 0 for the first set of experiments on synthetic data (Section
V-C), while it is calibrated on a train set to the value of 19
for the ESM dataset considered in Section V-D. For the tabu
search procedure, the tabu tenure parameter α is set to the
value of 0.6 (as in [8]). The maximal number of iterations for
each tabu search is set to 50. Table I summarizes the parameter
setting for our algorithm and the different competitors. For
each algorithm and each scenario, a maximum computation
time of one hour is retained.

TABLE I
PARAMETER SETTINGS

Parameter Description Value
TEDS
nbiter Nb iterations of local search 50
α Tabu tenure parameter 0.6
γ ML Penalization parameter 0 (sec V-C), 19 (sec V-D)
IMP [7]
nbiter Nb iterations local search 50
r Radius of random jump 2
β ML Penalization parameter 0.5 (sec V-C), 0.1 (sec V-D)
OT [4]
s Threshold silhouette score -0.1 (sec V-C), 0.2 (sec V-D)
SDIF
ϵ Precision for histograms 0.05
X Threshold peaks histograms 0.9
c Threshold PRI transform 0.5



7

Fig. 3. Comparison of the deinterleaving algorithms on synthetic data of size
n = 500, 2000 and 5000. Tests were made for 5, 10, 20 and 50 symbols.
Each box represents the distribution of the V-measure scores obtained by the
compared algorithms and computed for 100 independent scenarios.

C. Experiments on synthetic datasets

We first consider the synthetic datasets presented in Section
IV-A with alphabets A of size 5, 10, 20 and 50 and observed
sequences of size n = 500, 2000, 5000. Figure 3 displays with
different boxplots the distribution of the V-measure scores
obtained for 100 independent scenarios by each compared
method (SDIF, OT, IMP, and TEDS) for each configuration
(|A|, n).

The V-measure score is a classical metric used to evaluate
the quality of a partitioning result. It corresponds to the har-
monic mean of the measures of homogeneity and completeness
of the partition of symbols in comparison with the ground truth
[16]. The higher the scores, the better the results.

First we observe that TEDS (in blue) always returns the
ground truth partition for the scenarios with 5 and 10 symbols
and sequences with 5000 data points (V-measure scores always
equal to 1). For other configurations, the number of data points
is not sufficient to guarantee a consistent estimation of the
score associated to each partition. Unsurprisingly, the worst
results are obtained for scenarios with the highest number of
symbols, |A| = 50, and the lowest numbers of data points,
n = 500.

Overall, we observe that TEDS (in blue) dominates all the
competitors for all configurations. The second best algorithm
is IMP (in red), which also uses a deinterleaving scheme based
on a Markov representation of the data. Algorithms that are not
based on a Markov model return partitions far from the ground
truth, as evidenced by the low V-measure scores obtained by
SDIF and OT for the different scenarios.

Regarding the computation time required to find the best

partition, TEDS and IMP require the highest computing time,
because they need to compute thousands of entropy scores
during the exploration of the partition space.

D. Electronic Warfare experiments

In this section we present an application on datasets coming
from an Electronic Warfare data generator which simulates
realistic situations with an airborne ESM (Electronic Support
Measure) receiver in an environment composed of many radars
whose number and positions can be selected in the simulation.
One configuration corresponds to a random draw in a realistic
radar library and a random draw in their relative phasing.
For each configuration, we generate a dataset D consisting
in a sequence of intercepted pulse parameters, including their
corresponding frequency (CF) and time of arrival (ToA). The
ground truth partition Πtruth (i.e., the association of each
pulse to each transmitter) is given by the simulator but is
assumed unknown. The objective is then to retrieve Πtruth

from the data.
1) Data description: Data are composed of 100 scenarios

generated with the ESM simulator. One scenario, illustrated in
Figure 4, corresponds to a manually selected window lasting
few seconds in a simulation of several minutes. The windows
J0, T K during which the pulses are observed for each scenario,
were selected regarding two criteria: two different transmitters
cannot transmit in the same frequency (because otherwise we
are in the case of non-disjoint alphabets) and all transmitters
cannot cease to transmit in the time window in order to meet
as much as possible the hypothesis (P) and (Q) made for
the data generating process (see Section II). Scenarios were
generated with or without missing pulses and with or without
noises, the missing rate can reach 60% and missing pulses are
randomly drawn according to a uniform law. The length of the
sequences observed in the different scenarios ranges from 90
to 8600, and the number of transmitters varies from 1 to 11.

2) Preprocessing step: Contrary to synthetic data, the num-
ber of symbols is not fixed and is deduced from the observed
data with the method explained below.

A preprocessing of the data is first performed to obtain the
alphabet A from the dataset, as it is done in [7]. It consists
in clustering pulses with the DBSCAN algorithm [17] based
on their frequency. Then, each cluster obtained is associated
with a symbol in A. We then obtain a sequence of frequency
symbols z of size n with their corresponding arrival times t.

The ϵ-neighborhood parameter of DBSCAN corresponds to
our precision parameter and is a fixed number of the order of
the frequency measured in MHz. After this pulse clustering
into the different groups (symbols), we obtain a number of
symbols ranging from 7 to 53 in the different scenarios.

Figure 4 illustrates an example of data generated with the
ESM simulator. The first plot represents the frequency of the
observed pulses (y-axis) according to their time of arrival (x-
axis) as they are fed into the algorithm. The second plot
shows the result of the pre-processing step, where the x-
axis represents the arrival times, but the y-axis shows the
symbols made with frequency values (frequency values are not
considered anymore: only symbol grouping remains). Ground
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Fig. 4. For both plots the x-axis is the time of arrival of observed data.
The y-axis in the first plot shows the frequency values as they are observed.
The second plot shows the result of the preprocessing step where the y-
axis represents the symbols when clustering pulses based on their frequency.
Ground truth is given: each color represents one emitter. There are four
emitters. Here we can see emitter 1 (in blue) emits only symbol d, while
emitter 4 (red) emits 10 symbols a, b, c, e, f, h, i, j, k, p.

truth is represented, with four emitters and each one associated
with one color.

3) Hyperparameter calibration: We first performed a cal-
ibration of the main critical parameters of the different al-
gorithms in order to maximize the average V-measure score
on a train set composed of the first 50 instances. With this
process, the penalization parameter γ of TEDS in the score
computation (cf. Equation (9)) is set to 19. The penalization
parameter β of IMP is set to 0.1. Three parameters were
optimized for SDIF, ϵ = 0.05, threshold x = 0.9, and
a second threshold needed for the PRI (Pulse Repetition
Interval) transform, α = 0.5. For the OT optimal transport
algorithm, the hierarchical cluster cut is defined as a function
of a silhouette score with a threshold set at s = 0.2. These
parameters are gathered in Table I.

4) Validation of the performances: With the calibrated pa-
rameters, we ran the compared algorithms on the 50 remaining
validation instances. Figure 5 displays the distribution of the
V-measure scores obtained by the four algorithms on the 50
test scenarios.

TEDS and IMP obtain the best results, with a slightly
better median obtained by TEDS compared to IMP, even if a
statistical test indicates that the difference in scores between
TEDS and IMP is not significant. TEDS returned 17 perfectly
deinterleaved scenarios over 50 against 16 for IMP. These
two algorithms do not retrieve the ground truth for the same

Fig. 5. Comparison of deinterleaving algorithm on simulated PDWs. One box
represents the distribution of the V-measure scores of an algorithm on the 50
test scenarios.

scenarios, which highlights to some extend the complementary
nature of these two approaches for this type of data. Note that
OT and SDIF make less restrictive hypothesis than we made
for the data selection i.e., (P), (Q) and no stop of emission.
Therefore, their results do not fully reflect their true efficiency.

VI. DISCUSSION AND PERSPECTIVES

The main contribution of this paper is to propose a new
deinterleaving method for interleaved pulse trains, which ex-
ploits both negative log-likelihood minimization of the symbol
sequence and negative log-likelihood minimization of their
sojourn times distribution. The choices made in constructing
the model (mixture of independent renewal processes, entropy
evaluation and penalty term) are supported by theoretical
analysis. We have shown that minimizing the proposed score
allows us to recover the true partition associated with the
generation of the observed sequence in the large sample limit.
This theoretical result is confirmed by an experimental analysis
of the score consistency. A comparison with other algorithms
on synthetic data and electronic warfare data from a realistic
simulator confirmed that TEDS is competitive with state-
of-the-art algorithms for the deinterleaving task and scales
favorably, in terms of computing time required, to the number
of transmitters in the generative process.

This work opens up various perspectives for future research.
First of all, we have observed that some of the assumptions
made in this paper can be violated in reality. In particular,
we assumed in this work that the sub-alphabets are disjoint,
which is not always the case in realistic scenarios, because
different transmitters may send pulse with the same frequency.
Secondly, we have assumed that all radars in the environment
constantly emit, but it may happen that a radar emits no
symbol for an extended period of time. The model could take
this into account by introducing, for example, a temporary
”off” state for each radar, during which it emits no pulses.
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APPENDIX

This online supplement presents the proofs of the theorems
and propositions (parts A–C) as well as the local search
procedure (TabuAP) and the crossover operator (GLPX) used
Algorithm 1 (part D).

A. Proof of Theorem 1

Proof. Let Π′ be a partition such that P = GΠ′({P e}e∈E(Π′)).
Let us assume that Π ̸= Π′ and let us show that we arrive at
a contradiction.

First case. We claim that there exist a sub-alphabet AeΠ′ ∈
Π′, such that |AeΠ′ | ≥ 2 and AeΠ′ /∈ Π. Here eΠ′ ∈ E(Π′)
denotes an emitter generating symbols in the sub-alphabet
AeΠ′ .

AeΠ′ contains at least two symbols a and b, such that a is
in a sub-alphabet AeΠ ∈ Π and b /∈ AeΠ . Thus, there exists
AfΠ ∈ Π, with fΠ ∈ E(Π) and fΠ ̸= eΠ, such that b ∈ AfΠ

with AfΠ ̸= AeΠ .
We denote by kmin the least possible delay between two

symbols a that P can generate (i.e., kmin = min
k∈Ka

(k)). Since

P = GΠ′({P e}e∈E(Π′)), b cannot be emitted after a in a
time delay lower than kmin. Since P = GΠ({P e}e∈E(Π)),
P can generate a sequence z[AeΠ ∪ AfΠ ] = zta ..ztb ..zta′ ,
with zta = a, ztb = b, zta′ = a, where ta′ − ta = kmin and
ta < tb ≤ ta′ , under assumptions (P) and (Q). This is always
true since P eΠ can generate any sub-sequence corresponding
to an arbitrary number λ of repetitions of symbol a, with time
delay kmin separating each occurrence. For a sufficiently high
λ, fΠ can emit symbol b during the same interval, whatever
KeΠ and KfΠ .

Thus, either tb = ta′ , which is impossible for Π′ since
arrival times of symbols from a single transmitter must be
strictly increasing (by definition of a renewal process as given
in Section II-A), or it contradicts the previous assertion that
states that tb − ta ≥ kmin.

Second case. We claim that there exists a sub-alphabet
AeΠ ∈ Π, such that |AeΠ | ≥ 2 and AeΠ /∈ Π′. AeΠ contains
at least two symbols a and b, such that a is in a sub-alphabet

AeΠ′ ∈ Π′ and b /∈ AeΠ′ . Thus, there exists AfΠ′ ∈ Π′,
with fΠ′ ∈ E(Π′) and eΠ′ ̸= fΠ′ , such that, b ∈ AfΠ′ with
AfΠ′ ̸= AeΠ′ . Using the same reasoning as in the first case,
we arrive at a contradiction, which concludes the proof.

B. Proof of Proposition 1

Proof. This proof is very similar to the proof of Proposition
4.1 in [1]. First we have

∀ i ∈ Ae

∑
k∈Ki

qe,∼i (k) = 1 (14)

Let (λi)i∈z[Ae] be real coefficients. According to (3) and (14),
the approached log-likelihood can be written in the form

log(LT
∼(z

e, te)) =
∑

i,j∈Ae

Ne
i,j(T )log pe,∼i,j

+
∑
i∈Ae

(∑
k∈Ki

Ne
i (k, T ) log qe,∼i (k) + λi(1−

∑
l∈Ki

qe,∼i (l))

)
(15)

When deriving (15) with respect to qe,∼i (k), we observe that
a maximum is obtained in q̂e,∼i (k) =

Ne
i (k,T )
λi

.
By using (14), we obtain

1 =
∑
k∈Ki

qe,∼i (k) =
∑
k∈Ki

Ne
i (k, T )

λi
=

Ne
i (T )

λi
(16)

Thus, the value of qe,∼i (k) maximizing (15) is q̂e,∼i (k) =
Ne

i (k,T )
Ne

i (T ) .
With the same method, we derive that the value of pe,∼i,j

maximizing (15) is p̂e,∼i,j (T ) =
Ne

i,j(T )

Ne
i (T ) .
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C. Proof of Theorem 2

In order to prove Theorem 2, we first show that the
generative model GΠ defined as a set of Markov renewal
chains can be represented as an ergodic finite-state-machine
(FSM) source.

Using the notation proposed in [2], an FSM over an alphabet
A is defined by the triplet F = (S, s0, f) where S is a finite
set of states, s0 ∈ S is a fixed initial state and f : S ∗A → S
is the next-state function. The definition of an FSM source is
completed from an FSM with the addition of a conditional
probability distribution PF (.|s) with each state s of S, and a
probability distribution P init

F (.) on the initial state s0. The
FSM source generates a sequence of states s by choosing
an initial state s0 according to P init

F (.), then by choosing an
action at according to PF (.|st−1), and transitions to the state
st = f(st−1, at).

1) Markov renewal chain as an FSM: We first observe that
a Markov renewal chain (Ze, T e) can be represented as an
FSM source. For a transmitter e generating a sequence of
symbols in Ae, we define the state space Se ∈ Ae×De, with
De the set of integers corresponding to the time since a letter
of Ae has been transmitted. De = {0, 1, . . . , max

a∈Ae,k∈Ka
k−1}

is a finite set of integers.
A state s ∈ Se corresponds to a pair s = (i, d), with i ∈ Ae,

the last symbol transmitted by the emittter e since a duration
of d ∈ N units of time.

We introduce also the set A∗
e = Ae∪∗, with ∗ a new symbol,

indicating that the previous symbol i ∈ Ae lasts one unit of
time longer but that there is no transition toward a new letter.

For a Markov renewal chain (Ze, T e), we consider the FSM
Fe = (Se, se0, f

e), with finite state space Se ∈ Ae×De, initial
state s0 and next-state function fe.

For the definition of the next-state function fe, given a state
s = (i, d) and a ∈ A∗

e , we have

fe(s, a) =

{
(i, d+ 1) if a = ∗
(a, 0) if a ∈ Ae

Note that, following a process different from P e on states
Se (which we consider in the following for the proof of
Theorem 2), it is possible to get actions at state s that should
be unavailable from that state. This is the case for instances
when a = ∗ while d ≥ kmax, with kmax > max

b∈Ae,k∈Kb
k

an arbitrarily delay limit set for the transmitters (allowing to
consider finite state sets in the following). In that cases, we
consider that fe(s, a) = s to stay inside Se.

To complete the definition of an FSM source, for each state
s = (i, d) (with i ∈ Ae and d ∈ N) and symbol a ∈ A∗

e we
define the conditional distribution as

PFe(a|(i, d)) =

{
1− hi(d+ 1) if a = ∗
pei,jhi(d+ 1) if a = j ∈ Ae,

with hi(t) =
qei (t)∑

k∈Ki,k≥t

qei (k)
, the instantaneous risk of occur-

rence of a transition at time t for the letter i.

By abuse of notation and for simplicity, we denote
PFe(st+1|st) = PFe(at+1|st) the probability of choosing an
action at+1 given st, which leads to the deterministic transition
to the state st+1 = f(st, at).

Proposition 2. Under assumptions (Q), (K) and (P), each
FSM Fe = (Se, se0, f

e) for e = 1, . . . , E, is ergodic.

Proof. Let Ke = ∪z∈AeK
z , the set of all sojourn times for

transmitter e. Let Kz(d) be the set of sojourn times for letter
z greater or equal to d: Kz(d) = {k ∈ Kz, k ≥ d}.

First, we observe that all the states s ∈ Se of the FSM Fe =
(Se, se0, f

e) built from the Markov renewal chain (Ze, T e) are
recurrent. Indeed, according to assumptions (Q) and (P), for
i, j ∈ Ae, l ∈ N we have P e(zel+1 = j|zel = i) > 0, and
for i ∈ Ae, k ∈ Ki, P e(xl+1 = k|zel = i) > 0. Therefore,
for each state s = (i, d) ∈ Se, there is always a positive
probability to return to this same state (i, d) in a finite number
of time steps.

Given a state (i, d), the number of time steps allowing to
return to this same state (i, d) with positive probability, is
∆T = kid +

∑
j=1,...,|Ke| λjk

e
j , with kid ∈ Ki(d), kej ∈ Ke

and the λj’s are non-negative integer coefficients. Given a state
(i, d) ∈ Se, we denote T e(i, d) this set of transition times ∆T .

Given a state (i, d), let us show that the greatest common
divisor (gcd) of the set T e(i, d) is equal to 1.

Let us assume that gcd(T e(i, d)) = r, with r > 1 and let us
show that we arrive at a contradiction. As gcd(T e(i, d)) = r,

∀(λ1, . . . , λKe
) ∈ N|Ke|,∃µ ∈ N, kid +

∑
j=1,...,|Ke|

λjk
e
j = µr.

(17)
In particular, when all λj’s are equal to 0, for kid ∈ Ki(d),

there exists µ0 ∈ N, such that kid = µ0r. Thus r is a
divisor of kid ∈ Ke. If Ke contains only kid, then according to
assumption (K), kid = 1, and we directly have r = 1 which
is a contradiction. Otherwise |Ke| > 1. Thus, given any other
sojourn time kej ∈ Ke, such that kej ̸= kid, using Equation
(17), we know that there exists µj > µ0, such that we have
also kid + kej = µjr, and thus we have kej = (µj −µ0)r. Then
r is a divisor of kej . Thus, r > 1 is a divisor of all sojourn
times kej ∈ Ke, which is impossible because gcd(Ke) = 1,
according to assumption (K).

Therefore, given a state (i, d) ∈ Se, we have shown that
gcd(T e(i, d)) = 1, thus each state s ∈ Se is aperiodic.

Moreover each pair of states, si, sj ∈ Se, communicate with
each other, i.e., when starting from state si there is always a
positive probability to arrive in state sj in a finite number of
time steps. Therefore, Fe is ergodic.

We now show the likelihood equivalence of both represen-
tations (Markov renewal chain and FSM source) for a single
transmitter. Let (ze, te) = (zel , t

e
l )l=0,...,ne−1 be an observed

sequence of ne symbols zel ∈ Ae with their corresponding time
of arrival tel , generated by P e until time T , given (z−1, t−1)
the last event before the observation. Let se = (set )t=0,...,T be
the observed sequence of T + 1 pairs set ∈ Se, such that for
all l = −1, 0, . . . , ne − 1,∀t ∈ Jtel , t

e
l+1J, s

e
t = (zel , t− tel ). If

(ze−1, t
e
−1) is the last state before the observation, the corre-

sponding last unobserved FSM state is se−1 = (ze−1, |te−1|−1).
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Proposition 3. Given state se−1 at time t = −1, the
conditional likelihood LT

−,Fe(se) for the sequence se =

(sei )
T
i=0, generated by the FSM Fe, is equal to the condi-

tional likelihood LT
−(z

e, te) of the corresponding sequence
(zei , t

e
i )

Ne(T )−1
i=0 given (ze−1, t

e
−1).

Proof.

LT
−,Fe(se) =

T−1∏
t=−1

PFe(set+1|set ) (18)

LT
−,Fe(se) =

te0−1∏
t=−1

PFe(set+1|set )
ne−2∏
l=0

tel+1−1∏
t=tel

PFe(set+1|set )

T−1∏
t=te

ne−1

PFe(set+1|set ), (19)

We compute the first term
∏te0−1

t=−1 PFe(set+1|set ). We have,
if t0 > 0

te0−1∏
t=−1

PFe(set+1|set ) (20)

=

te0−2∏
t=−1

PFe(set+1|set )PFe(set0 |s
e
t0−1)

=

te0−2∏
t=−1

(1− hze
−1
(|te−1|+ t+ 1))P e(ze0|ze−1)hze

−1
(te0 + |te−1|)

=

∑
k⩾|t−1|+t0

qze
−1
(k)∑

k⩾|t−1| qze
−1
(k)

P e(ze0|ze−1)
qze

−1
(te0 + |te−1|)∑

k⩾|te−1|+t0
qze

−1
(k)

= P e(ze0|ze−1)
P (te0 + |te−1||ze−1)

Re
−1(|te−1| − 1)

If t0 = 0, (20) is immediate.
Now let us compute separately the terms∏tel+1−1

t=tel
PFe(set+1|set ) and

∏T−1
t=te

ne−1
PFe(set+1|set ).

For l = 0, . . . , ne − 2, given states setel = (zel = i, d = 0)
and setel+1

= (zel+1 = j, d = 0),

tel+1−1∏
t=tel

PFe(set+1|set ) = [

tel+1−tel−2∏
t=0

1− hi(t+ 1)]pei,jhi(t
e
l+1 − tel )

(21)
= Ri(t

e
l+1 − tel − 1)pei,jhi(t

e
l+1 − tel )

Thus,
tel+1−1∏
t=tel

PFe(set+1|set ) (22)

= pei,j
∑

k∈Ki,k>tel+1−tel−1

qei (k)×
qei (t

e
l+1 − tel )∑

k∈Ki,k≥tel+1−tel
qei (k)

= pei,jq
e
i (t

e
l+1 − tel )

= P e(zel+1|zel )× P e(tel+1 − tel |zel )

Furthermore, given a state sete
ne−1

= (zene−1, d = 0),

T−1∏
t=te

ne−1

PFe(set+1|set ) =
T−tene−1−1∏

t=0

(1− hze
ne−1

(t+ 1)) (23)

= Re
ne−1(T − tene−1)

Using (2), (19), (20), (22) and (23) we finally obtain:

LT
−,Fe(se) = LT

−(z
e, te). (24)

2) Collection of Markov renewal chains as a FSM: Given
a partition Π = {AeΠ}eΠ∈E(Π) of A into m non-empty
and disjoint sub-alphabets, the global generative process GΠ

corresponds to a set of m independent Markov renewal chains
associated to each individual transmitter eΠ ∈ E(Π), each
emitting from its own sub-alphabet Ae. This process can
be represented as a global FSM FΠ = (SΠ, sΠ0 , fΠ), with
state set SΠ =

∏
e∈E(Π) Se corresponding to the Cartesian

product of the states of the individual FSM of each trans-
mitter e ∈ E(Π) defined in previous section. Given a state
s ∈ SΠ, with s = {se}e∈E(Π), and an action a ∈ A∗

Π,
with A∗

Π =
∏

e∈E(Π) A
∗
e and a = (ae)e∈E(Π), we have

fΠ(s,a) = (fe(se, ae))e∈E(Π), where fe stands for the next
state function from the corresponding individual FSM Fe. For
each state we define and PFΠ(.|s) =

∏
e∈E(Π) PFe(.|se).

Proposition 4. Under assumptions (P), (Q) and (K), the
FSM FΠ = (S, s0, f) is ergodic.

Proof. Under assumptions (P), (Q) and (K), according to
Proposition 2 each FSM Fe = (Se, se0, f

e) for e ∈ E(Π), is
ergodic.

Therefore, for e ∈ E(Π), there exists some ne
0, such that

for every integer ne, greater than ne
0, and for every pair of

states i, j ∈ Se, there exists a i-to-j path of length ne
0, a i-to-

j path of length ne
0 + 1, a i-to-j path of length ne

0 + 2, and
so on. We denote n0 = max

e∈E(Π)
ne
0. Thus, given any two states

si = {sei}e∈E(Π) and sj = {sei}e∈E(Π), there always exists a
path of length n0 allowing to reach sj from si. Therefore FΠ

is ergodic.

Given a partition Π = {Ae}e∈E(Π) of A into m non-
empty and disjoint sub-alphabets, let (z, t) be sequence of
n symbols z ∈ A with their corresponding time of arrival
tl, generated by P = GΠ and observed in the time window
J0, T K. In this sequence, each transmitter e ∈ E(Π) generates
a sequence (zel , t

e
l )l=0,...,ne−1 of ne symbols zel ∈ Ae with

their corresponding time of arrival tel ∈ N and their last non
observed state (ze−1, t

e
−1). Let s = (st)t=0,...,T be the sequence

of T + 1 states st = {set}e∈E(Π) ∈ SΠ, such that ∀e ∈
E(Π), ∀l = −1, 0, . . . , ne−1,∀t ∈ Jtel , t

e
l+1J, s

e
t = (zel , t−tel )

given se−1 = (ze−1, |te−1| − 1).

Proposition 5. Given a state s−1 at time t = −1, the
conditional likelihood LT

−,FΠ
(s) of this sequence s, generated

by the FSM FΠ, and observed until time T , is equal to
the conditional likelihood LT

−,Π(z, t) of the sequence (z, t)
generated by P given (ze−1, t

e
−1)e∈E(Π).
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Proof. This is trivial, as all the transmitters are independent,
and using Proposition 3.

Now let Π be a partition associated to a generative model
GΠ. The maximum of the exact and approached likeli-
hood, given by (2) and (3), of the sequence (z, t) follow-
ing (z−1, t−1) are respectively denoted as L̂T

−,Π(z, t) and
L̂T
∼,Π(z, t).

Proposition 6. Given two partitions Π and Π′, for any
sequence (z, t) sampled from PΠ|Π′ , we have:

log(L̂T
−,Π′(z, t))− log(L̂T

∼,Π′(z, t))

T
→ 0 (25)

a.a.s as T → ∞.

Proof. For any emitter e ∈ E(Π′), we denote by p̂e and q̂e

the estimators that maximize the log-likelihood function:

log(L̂T
−(z

e, te)) = log(p̂eze
−1,z

e
0
(T )) + log(q̂eze

−1
(te0 − te−1, T ))

− log(R̂e
−1(|te−1| − 1))

+
∑
i∈Ae

∑
j∈Ae

Ne
i,j(T )log p̂ei,j(T )

+
∑
i∈Ae

∑
k∈Ki

Ne
i (k, T ) log q̂ei (k, T )

+ log(R̂e
Ne(T )−1(uT )) (26)

with uT = T − teNe(T )−1.
We first look at each estimator q̂ei for any symbol i from

Ae, that are all independent from p̂e in that maximization,
and also independent from each other q̂ej whenever j ̸= i. By
construction, our algorithm considers all necessary delays as
included in Kze

i for each i. For a sufficiently large observation
window J0, T K, we thus have, for each transition starting
from symbol i, a delay k ∈ Kze

i that match the delay
of the observed transition, and thus one different parameter
q̂ei (k, T ) > 0. Since the sequence is sampled from a process
that guarantees the feasibility for PΠ′ , we know that two
symbols from Ae cannot be emitted at the same time, which
discards k = 0.

Recalling R̂e
i (x) = P (tei+1 − tei > x|zi), we can write :

R̂e
−1(|te−1| − 1) =

∑
k∈K

ze−1 ,k>|te−1|−1

q̂eze
−1
(k, T ). (27)

and

R̂e
Ne(T )−1(uT ) =

∑
k∈K

ze
Ne(T )−1 ,k>uT

q̂eze
Ne(T )−1

(k, T ). (28)

For a given symbol i and a given delay k ∈ Kze
i , we note that

q̂ei (k, T ) can be part of the expression of R̂e
−1(|te−1| − 1) (if

ze−1 = i and k > |te−1|) or R̂e
Ne(T )−1(uT ) (if zeNe(T )−1 = i

and k > uT ).
Using of the same method as in the proof for Proposition 1

with these additional factors, we obtain the following equation

by canceling the derivative of the Lagrangian expression w.r.t.
q̂ei (k, T ):

λi = −ξe−1(k, i)+
I(k = te0 − te−1) +Ne

i (k, T )

q̂ei (k, T )
+ξeu(k, i)

(29)

where I(.) is the indicator function that equals 1 if the argument
is true, 0 otherwise, and

ξe−1(k, i) =

{
1

R̂e
−1(|te−1|−1)

if ze−1 = i and k ≥ |te−1|

0 otherwise,

ξeu(k, i) =


1

R̂e
Ne(T )−1

(uT )
if zeNe(T )−1 = i and k > uT

0 otherwise.

Next, since ξe−1(k, i) and ξeu(k, i) are both upper-bounded
by 1

q̂ei (k,T ) , we observe that λi is bounded as:

Ne
i (k, T ) + 2

q̂ei (k, T )
≥ λi ≥

Ne
i (k, T )− 1

q̂ei (k, T )
.

Since q̂ei (k, T ) ≤ 1, we know that λi ≥ Ne
i (k, T ) − 1. We

also deduce that
Ne

i (k, T ) + 2

λi
≥ q̂ei (k, T ) ≥

Ne
i (k, T )− 1

λi
.

Considering that sequences are sampled from PΠ|Π′ , and since
we know that the process is ergodic from assumption K, we
have for every symbol i and delay in k ∈ Ke

i :

Ne
i (k, T )

T
→ q∗i (k)

δ∗i
a.a.s. as T → ∞

with δ∗i the expected delay between two occurences of symbol
i in the sequence and q∗i (k) the true probability of delay k from
symbol i in the process PΠ|Π′ . Thus, since δ∗i and q∗i (k) are
stationary, we get that both Ne

i (k, T ) and λi increase with T .
We obtain that both bounds of q̂ei (k, T ) converge in probability
to Ne

i (k,T )
λi

, thus: q̂ei (k, T )−
Ne

i (k,T )
λi

→ 0 a.a.s as T → ∞.
From the Karush–Kuhn–Tucker conditions, we know that:

λi(1−
∑

l∈Ki q̂ei (l, T )) = 0, thus λi converges in probability
toward

∑
l∈Ki Ne

i (l, T ) when T goes toward infinity. Finally,
we get that: (q̂ei (k, T )−

Ne
i (k,T )∑

l∈Ki Ne
i (l,T ) ) → 0 a.a.s as T → ∞,

which corresponds to the estimator obtained from the maxi-
mization of the approximation L̂T

∼,Π′(z, t).
Demonstrating the asymptotic equivalence of optima for

p̂e estimators is more direct. We can simply note that both
likelihoods only differ from the first transition, that is ig-
nored from L̂T

∼,Π′(z, t). The only possible difference thus
can lies on p̂eze

−1,z
e
0
(T ), whose estimation from L̂T

−,Π′(z, t)

gives
Ne

ze−1
,ze0

(T )+1

Ne
ze−1

(T )+1 , while we obtain
Ne

ze−1
,ze0

(T )

Ne
ze−1

(T ) from the

maximization of L̂T
∼,Π′(z, t). Similarly as above, we can

simply note that, for any i ∈ Ae and j ∈ Ae:

Ne
i (T )

T
→ 1

δ∗i
a.a.s. as T → ∞

and:
Ne

i,j(T )

T
→

p∗i,j
δ∗i

a.a.s. as T → ∞
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with p∗i,j the stationary probability for emitting j from i in
process PΠ|Π′ . Thus, as all components except T are constants,

we get, recalling p̂eze
−1,z

e
0
(T ) =

Ne
ze−1

,ze0
(T )+1

Ne
ze−1

(T )+1 :

Ne
ze
−1,z

e
0
(T ) + 1

Ne
ze
−1
(T ) + 1

−
Ne

ze
−1,z

e
0
(T )

Ne
ze
−1
(T )

→ 0 a.a.s. as T → ∞

Thus, we know that all estimators from both optimization
converge asymptotically toward the same optima. We directly
obtain that:

log(L̂T
−,Π′(z, t))− log(L̂T

∼,Π′(z, t))

T
→ 0 (30)

a.a.s. as T → ∞, since every component from L̂T
−,Π′(z, t) not

present in L̂T
∼,Π′(z, t) converge to constant values depending

on stationary true parameters of the process PΠ|Π′ .

Now using Theorem 1 and Propositions 4, 5 and 6 we prove
Theorem 2.

Proof. For this proof we took inspiration from the proof of
Lemma 10 in [2] and we use the representation of the gen-
erative model GΠ as a global ergodic FSM FΠ, as described
above. Let Π

′
be a partition of A such that Π

′ ̸= Π.
Let respectively FΠ = (SΠ, s

Π
0 , fΠ) and

FΠ′ = (SΠ′ , sΠ
′

0 , fΠ′) be the FSM representing
PΠ = GΠ({P e}e∈E(Π)) and PΠ′ = GΠ′({P e}e∈E(Π′)).
Let PFΠ

and PFΠ′ be the respective probability distribution
defined on states of the respective FSM FΠ and FΠ′ to
represent the processes.

First of all, let F+ = (S+, s+0 , f
+) be a common refinement

of FΠ and FΠ′ , such that there exist functions gΠ : S+ →
SΠ and gΠ′ : S+ → SΠ′ allowing to recover states of both
processes from S+. That is, for any sequence (z, t) observed
until time T and its corresponding state sequence (s+t )

T
t=0,

the respective state sequences
(
sΠt
)T
t=0

and
(
sΠ

′

t

)T
t=0

satisfy

sΠt = gΠ
(
s+t
)

and sΠ
′

t = gΠ′
(
s+t
)
, for any t = 0 . . . T .

According to [2], it is always possible to construct a common
refinement of two FSMs, whose state set S+ is the Cartesian
product of the two respective state sets. Thus, for any state
s+t ∈ S+, we consider s+t = (sΠt , s

Π′

t ), with sΠt ∈ SΠ and
sΠ

′

t ∈ SΠ′
.

At any time step t, sΠt ∈ SΠ (resp. sΠ
′

t ∈ SΠ′ ) can be
recovered from s+t , by considering the function gΠ (resp. gΠ′ )
that selects the corresponding part to Π (resp. Π′) from s+t .

In the following, we note P+
F the adaptation of the probabil-

ities PF to the states of the FSM F+, that is: ∀s+i ∈ S+,∀a ∈
A∗

Π, P
+
FΠ

(a|s+i ) = PFΠ(a|gΠ(s+i )). Thus, ∀(s+i , s
+
j ) ∈ S+ ×

S+, P+
FΠ

(s+j |s
+
i ) =

∑
a∈A∗

Π
PFΠ(a|gΠ(s+i ))I(f+(s+i , a) =

s+j ), with I(.) the indicator function. One notes that to make
P+
FΠ

irreducible, we consider in the following a set S+ only
containing states that are reachable from the process PΠ. Thus,
S+ is a finite state space, since every transmitter owns a finite
maximal emission delay. Also, as PFΠ

is ergodic according to
Proposition 2 under assumptions (P), (Q) and (K), and P+

FΠ

is ergodic under the same assumptions.

In that setting, the asymptotic normalized Kullbak-Liebler
divergence relative to PΠ from PΠ′ can be written as:

D(PΠ||PΠ′) = D(P+
FΠ

||P+
FΠ′ ) (31)

=
∑
s∈S+

P+
FΠ

(s)D(P+
FΠ

(.|s)||P+
FΠ′ (.|s)),

with D(P+
FΠ

(.|s)||P+
FΠ′ (.|s)) the Kullback-Leibler divergence

of the conditional distribution P+
FΠ

(.|s) from P+
F ′

Π
(.|s). This

provides us a powerful tool to compare the processes.
However, as already mentioned above, impossible actions

for PΠ′ can be emitted from PΠ when for instance an emission
delay is lower (resp. greater) than the minimal (resp. maximal)
delay for the corresponding transmitters from Π′.

• First, regarding maximal delay, when following PΠ it may
happen that a symbol z from a transmitter e of Π has not
been observed since a long time d, because for instance
other symbols from e were repeated many times after its
last occurrence.

• On the other hand, actions can be blocked because they
correspond to the simultaneous emission of symbols that
shouldn’t be observed at the same timestep, due to the
fact they belong to the same sub-alphabet of Π′.

Such cases result in an undefined KL divergence, with
some impossible transitions or incompatible states for Π′.
Considering sufficiently long time windows, such bad events
occur with probability 1 for every Π′ ̸= Π, for sequences
generated from PΠ, due to the incompatibility result stated
in theorem 1. As explained in section III-B, such situation
gets CT

Π′(z, t) := +∞ when detected, which allows our
algorithm to discard the corresponding partition. This respects
the positive difference from the theorem, as CT

Π(z, t) always
remain defined after a sufficiently large T .

However, such bad events can occur very rarely for some
scattered sets of emission delays. In the following, we show
that even for sequences feasible for both process PΠ and P ′

Π,
our algorithm is able to correctly identify the best partition,
after a sufficiently long period of time T . For this, we
consider sequences sampled from PΠ|Π′ , which corresponds
to a process restricting PΠ to the subset of possible sequences
for PΠ′ .

Thus, we consider an alternative FSM F∗ = (S∗, s∗0, f
∗),

which corresponds to the common refinement F+ in which
we remove from f+ all transitions which are either impossible
regarding Π or Π′, or that lead to any s ∈ S+ from which
every sequence to come back in s implies impossible actions
regarding Π or Π′. S∗ ⊂ S+ contains only states that are
reachable following possible transitions for both processes,
starting from any state from S∗. By definition, s ∈ S∗ implies
there exists a set of trajectories in F∗ that allows us to leave
and go back to s. In that FSM, following process PΠ|Π′

corresponds to considering P ∗
FΠ

as the probabilities from P+
FΠ

adapted to F∗, where the probability mass of actions leading
deterministically outside S∗ from any state in S∗ are evenly
redistributed on other admissible actions regarding f∗. Using
this, we have:
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• By definition, starting from a state from S∗, there always
exists an alternative to the simultaneous emission of
symbols from the same transmitter in E(Π′). These sym-
bols can be emitted from their corresponding transmitters
in E(Π) at different timesteps. When such a delayed
emission occurs, the corresponding transmitter recovers
its whole set of possible delays, with gcd of 1, hence
ensuring aperiodicity of the state in F∗.

• By construction, as S∗ is a finite set, there always exists
a finite kmax sufficiently high to maintain aperiodicity
of any state from S∗ despite blocked transitions due to
maximal delays.

Thus, if S∗ is non-empty (some sequences can be generated by
both processes when starting from sΠ0 ), P ∗

FΠ
is ergodic under

the same assumptions as above for the ergodicity of PFΠ
on

S. In that setting, the KL divergence relative to PΠ|Π′ from
PΠ′ can be given as

D(PΠ|Π′ ||PΠ′) = D(P ∗
FΠ

||P ∗
FΠ′ ) = D(P ∗

FΠ
||P+

FΠ′ ) (32)

=
∑
s∈S∗

P ∗
FΠ

(s)D(P ∗
FΠ

(.|s)||P ∗
FΠ′ (.|s))

Let (z, t) be sequence of n symbols zl ∈ A with their
corresponding time of arrival tl ∈ N, generated by PΠ|Π′ and
observed in the time window J0, T K. In this sequence, each
transmitter e, generates a sequence (zel , t

e
l )l=0,...,ne−1 of ne

symbols ze ∈ Ae with their corresponding time of arrival
tel ∈ N. Let sT = (st)t=0,...,T be the sequence of T +1 vector
states st ∈ S∗, corresponding to the generation of (z, t) with
P ∗
FΠ

on F∗.
Let P̂ ∗

FΠ
(sT ) be the probability estimator that maximizes the

log-likelihood log(L̂T,∗
FΠ

(sT )))), with corresponding empirical
entropy HT,∗

FΠ
(sT ) = − log(L̂T,∗

FΠ
(sT )))). We have

HT,∗
FΠ

(sT ) = −
∑

s,s′∈sT

Ns,s′(T )log P̂ ∗
FΠ

(s′|s), (33)

with Ns,s′(T ) the number of transitions from state s ∈ S∗ to
state s′ ∈ S∗ observed in the sequence sT until time T . We
have:

1

T
(HT,∗

FΠ′ (s
T )−HT,∗

FΠ
(sT )) =∑

s∈sT

Ns/T
∑
s′∈sT

[Ns,s′/Ns] log[P̂
∗
FΠ

(s′|s)/P̂ ∗
FΠ′ (s

′|s)] (34)

As P̂ ∗
FΠ

(sT ) is the probability estimator that maximizes the
likelihood of sT , we have Ns/T = P̂ ∗

FΠ
(s) and Ns,s′/Ns =

P̂ ∗
FΠ

(s′|s), since sT was generated following PΠ|Π′ . Thus:

1

T
(HT,∗

FΠ′ (s
T )−HT,∗

FΠ
(sT ))

=
∑
s∈sT

P̂ ∗
FΠ

(s)
∑
s′∈sT

P̂ ∗
FΠ

(s′|s) log[P̂ ∗
FΠ

(s′|s)/P̂ ∗
FΠ′ (s

′|s)]

= D(P̂ ∗
FΠ

||P̂ ∗
FΠ′ ). (35)

Next, as HT,∗
FΠ

(sT ) = − log(L̂T,∗
FΠ

(sT )) and HT,∗
FΠ′ (s

T ) =

− log(L̂T,∗
FΠ′ (s

T )), by using (35) and Proposition 5, we obtain:

1

T
(−log(L̂T

−,Π′(z, t)) + log(L̂T
−,Π(z, t))) = D(P̂ ∗

FΠ
||P̂ ∗

FΠ′ ).

(36)

And thus,
1

T
(−log(L̂T

∼,Π′(z, t)) + log(L̂T
∼,Π(z, t))) = D(P̂ ∗

FΠ
||P̂ ∗

FΠ′ )

+
1

T
(log(L̂T

−,Π′(z, t))− log(L̂T
∼,Π′(z, t)))

− 1

T
(log(L̂T

−,Π(z, t))− log(L̂T
∼,Π(z, t))). (37)

Now from (37) and Proposition 6, we deduce that
the quantity 1

T (H
T
Π′(z, t) − HT

Π (z, t)) converges toward
D(P̂ ∗

FΠ
||P̂ ∗

FΠ′ ) in probability when T goes toward infinity. So
does 1

T (C
T
Π′(z, t) − CT

Π(z, t), with CT
Π(z, t) = HT

Π (z, t) +

γmlog(n), as the term γmlog(n)
T goes toward 0 as T goes

toward infinity, as γ and m are positive constants and n ≤ T .
Since the sequence sT is generated with probability P ∗

FΠ
,

we have D(P ∗
FΠ

||P̂ ∗
FΠ

) → 0
as T → ∞. It thus remain to demonstrate that

D(P ∗
FΠ

||P̂ ∗
FΠ′ ) > 0 to conclude the proof.

Since Π′ is, by assumption different from Π, and thus fol-
lowing Theorem 1 incompatible with PΠ, no valid assignment
of parameters for FΠ′ can generate PΠ|Π′ , and, thus, P ∗

FΠ
is

not in the set of valid parameters V (Π′) ⊂ V ∗ for F∗
Π′ , with

V ∗ the whole set of valid parameters in F∗. Said otherwise,
we can distinguish two possible settings:

• At least two symbols z and z′ belong to the same sub-
alphabet AeΠ in Π and to two respective different sub-
alphabets AeΠ′ and Ae′

Π′
in Π′. For any s ∈ S∗, such

that seΠΠ = (z′, d′), with sΠ = gΠ(s), and s
eΠ′
Π′ =

(z, d), with sΠ′ = gΠ′(s) (i.e., we have d > d′),
D(P ∗

FΠ
(.|s)||P̂ ∗

FΠ′ (.|s)) = 0 implies P ∗
FΠ

(aeΠΠ = z|s) =
P ∗
FΠ′ (a

eΠ′
Π′ = z|s) for any (aΠ, aΠ′) ∈ A∗

Π × A∗
Π′ such

that P ∗
FΠ

(aΠ|s) > 0. This cannot be true for every such
state. Two different states (s, s′) ∈ S∗2 can be equal
on eΠ (i.e, seΠΠ = s′

eΠ
Π ), while having a different value

for eΠ′ (e.g., s
eΠ′
Π′ = (z, d) and s′

eΠ′
Π′ = (z, d′), with

d ̸= d′). From the definition of the probabilities of
actions, which are based on the instantaneous risk of
emission, we have: P ∗

FΠ′ (a
eΠ′
Π′ |s) ̸= P ∗

FΠ′ (a
eΠ′
Π′ |s′). At

the same time, since P ∗
FΠ

(aeΠΠ |s) = P ∗
FΠ

(aeΠΠ |s′), we can
conclude that there exists some state s ∈ S∗, such that
P ∗
FΠ

(aeΠΠ |s) ̸= P ∗
FΠ′ (a

eΠ′
Π′ |s).

• At least two symbols z and z′ belong to two respective
different sub-alphabets AeΠ and Ae′Π

in Π and to the
same sub-alphabet AeΠ′ in Π′. Same manner as above,
P ∗
FΠ

(aeΠΠ = z|s) cannot be equal to P ∗
FΠ′ (a

eΠ′
Π′ = z|s)

for all s such that seΠΠ = (z, d), with sΠ = gΠ(s), and
s
eΠ′
Π′ = (z′, d′), with sΠ′ = gΠ′(s).

Thus, D(P ∗
FΠ

||P̂ ∗
FΠ′ ) > 0 for any estimation of probabilities

in FΠ′ , since D(P ∗
FΠ

||P̂ ∗
FΠ′ ) = 0 only if ∀s ∈ S∗ such that

P ∗
FΠ

(s) > 0 we have D(P ∗
FΠ

(.|s)||P̂ ∗
FΠ′ (.|s)) = 0, which is

impossible for Π ̸= Π′ as demonstrated above. Thus

lim
T→∞

P(z,t)∼PΠ
(
1

T
(CT

Π′(z, t)− CT
Π(z, t)) > 0) = 1, (38)
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which concludes the proof of Theorem 2.

D. Details of the procedures used in the memetic algorithm
for alphabet partitioning

In this section, we describe in more detail the local search
(TabuAP) and the crossover (GLPX) procedures used in Al-
gorithm 1 (see Section III-C of the main paper).

1) TabuAP local search procedure: TabuAP for alphabet
partitioning is adapted from [3]. Starting from an initial
partition Π, it then iteratively replaces the current solution
Π by a neighboring solution Π

′
taken from its one-move

neighborhood N(Π) until it reaches a maximum of nbiter
iterations.

A neighboring solution of a partition Π = ∪m
e=1Ae is

generated by using the one-move operator, which displaces
a symbol a ∈ Ae to a different sub-alphabet Af , such that
f ̸= e. A symbol a ∈ Ae is allowed to be transferred to an
existing group Af for f = 1, . . . ,m, with f ̸= e, or to a
new group Am+1. We use Π ⊕ < a,Ae, Af > to denote the
resulting neighboring partition after performing a one-move
operation.

At each iteration, TabuAP examines the neighborhood and
selects a best admissible neighboring solution Π′ to replace
Π. A neighboring solution Π ⊕ < a,Ae, Af > built from
Π is admissible if the associated one-move < a,Ae, Af >
was not registered in the tabu list, which records the most
recently performed moves. Each time a move is performed, its
reversed move is added in the tabu list and forbidden during
the t = r(10) + α|A| next iterations (tabu tenure) where r
is a random number uniformly drawn in 1, ..., 10 and α is a
hyperparameter of the algorithm set to 0.6.

In order to identify the best admissible partition in the
neighborhood, we computer the global penalized scores given
by (9) of all the neighboring partitions Π ⊕ < a,Ae, Af >
and retain the neighboring partition with the lowest score. For
a move < a,Ae, Af > applied to the current partition Π and
resulting in a new partition Π′ = Π ⊕ < a,Ae, Af >, only
the negative log-likelihood scores of the changing groups Ae

and Af need to be reevaluated.
2) Greedy Likelihood-based Crossover Operator: The

GLPX crossover, adapted from [3], aims to transmit to the
offspring the largest possible Ae sub-alphabets from both
parents with as the lowest entropy as possible, because our
problem is to minimize the global negative log-likelihood of
the partition over the whole alphabet.

A GLPX score associated to a group of letters Ae is defined
as HT (ze,te)

|Ae| , where HT (ze, te) is the negative log likelihood
for transmitter e given by (4) and |Ae| is the size of the sub-
alphabet Ae.

Given two parent partitions Π1 and Π2, the GLPX procedure
performs two steps. First, it transmits to the offspring the sub-
alphabet with the lowest GLPX score. After having withdrawn
the letters of this sub-alphabet in both parents and recomputed
all scores, it transmits to the offspring the sub-alphabet with
the lowest GLPX score of the second parent. This procedure
is repeated until all the letters of the alphabet A are assigned

to the offspring. Note that this crossover is asymmetrical.
Starting the procedure with parent Π1 or parent Π2 can
produce different offspring partitions. Therefore when used
in the MAAP algorithm described in Algorithm 1 to generate
two new offspring partitions Π1 = GLPX(Π′

1,Π
′
2, (z, t)) and

Π2 = GLPX(Π′
2,Π

′
1, (z, t)), the two offspring partitions Π1

and Π2 can be very different (in the sense of edit distance).
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